/57076 - Zyy-43
70

Execution Environment for Intelligent Real-Time Control Systems
Vanderbih University o 5 7)
VE qofbe

Nashville, TN 37235

1. ABSTRACT

Modern telerobot control technology requires the integration of symbolic and mon-
symbolic programming techniques, different models of parallel computations, and various / [/
programming paradiges. This—paper describes_the Multigraph Architecture, which has been = /'§ iz sttt f
developed for the implementation of intelliyent real-time control systensﬂﬁe’ﬁmred ’
architecture includes specific computational models, integrated execution ‘environment and
various high-level tcols. A special feature of the architecture s the tight coupling
between the symbolic and non-symbolic computations. It supports not only a data interface,
but also the integration of the control structures in a parallel computing environment.

2. INTRODUCTION

There is an ever-increasing demand for 1-provin9/€he information processing capabilities of robot con-
trollers, measurement Systems, or process contro} systems. The ultimate goal is to emhance system autonomy,
adaptivity and functional performance. Since some of these features were previously provided by human
operators, systems exhibiting these properties are often qualified to be “intelligent.”

Essential extension of capabilities is alwdys based on the application of new techniques. Current trends
in intelligent systems include: (1) the use cf parallel/distributed computing architectures, (2) the use of
parzllel/distributed programming models, angd’ (3) the application of various artilicial intelligence (Al)
programming techniques. Since the new techniques typically are not substitutes but extensions of the conven-
tiona! techniques, integratiom has bec a key factor in building intelligent systems. Symbolic and numerical
computations, various programming paradigms and different parallel computing models have to be merged in the
frame of 3 possibly unified architect

The critical system component, where most of the implementational problems of system integration have to
be solved, is the execution envir nt. The execution environment provides run-time support for the architec-
ture, and couples various programing models to each other and to the underlying hardware system.

This paper describes an experimental architecture - the Multigraph Architecture - and the corresponding
execution environment developed for building integrated systems. After the summary of the background of this
research, the design considerations are outlined. Then, the main components of the Multigraph Architecture are
discussed, which is followed/by the susmmary of various applications and future plans.

1, BACXGROUND

A. Intelligent Systems

There is a rapidly growing research interest in the application of Al techniques in robot coatrollers,
measurement Systems and process control systems. General, architectural issues of intelligent cystems are
analyzed in (1]. The generic architectura of intelligent systems ‘s characterized by the introduction of the
“knowledge-level,® which includes “knowledge-inteasive® system components providing high-level perception,
modelling and planning functionalities.

The structure and operation of the knowledge-level system components are typically wmodel-driven. New
possibilities offered by knowledge-based, model-driven automation in telerobotics are described in {2]. Ar-
chitectural issues of model-driven instrumentation are discussed in [3] and the application of new techniques
in the Knowledge-based Experiment Builder of a magnetic resonance imaging system is discussed in [4]. The
prospective of model-driven, knowledge-based systems in controllers is outlined in [5].

A coemon view regarding the structure of intelligent systems operating in real-time environment is that

they must have layered architecture where “high-level,” knowledge-dased system components synthesize, monitor
and control the operation of the “low-level” sensory and processing activities.

131

B. Graph models of computations

An teportant class of parallel computational models are the graph models. The computatiesal graphs (or
control graphs) are directed graphs, where nodes represent units of computations aad arcs represest dependency
relationships. The general properties of graph models are analyzed in [6]), and their classification fs gives
in [7). In datafiow models, arcs arise from data dependences, and data are passed along the arcs ia executios
time. In costrol-flow wmodels, not the data, but pointers to the data are carried; therefore, this model re-
quires the availability of shared semory. The computational units can be scheduled data-driven or demand-
driven. Data-driven scheduling means that a umit is executable if the necessary input data are availadle. Is
demand-driven scheduling, only those nodes which are necessary to provide the requested data are activated.

Graph models have essential advantages in the context of fatelligent real-time systems.

- Graph models can uniformly describe parallel computations for different
sultiprocessor architectures, such 3s distributed and shared memory systems.

~ The granularity of the model can be “tuned” by selecting the size of the
compytational units.

- The "imperative® parts of the computation (i.e. the code of the computational
units) are naturally separated from its logic structure represented by the
control graph. This separation makes it possidble to dynamically modify the
computational structure.

- The control graph can be easily represented in declarative fors. The declarative
representation is the key for using symbolic processing techniques to synthesize
various computational structures, such as real-time signal procassing systess [4].

4. DESIGN CONSIDERATIONS

The Multigraph Architecture (MA) provides software framework for building intelligent systems in real-
time, parallel computing environment. The main layers of the architecture are: the (1) Physical layer, (2)
Systea layer, (3) Module layer and (4) Knowledge base layer. The basic proper:ies of the individual layers are
summarized below.

A. Pnysical layer

Computational heterogeneity, various physical constraints (such as distance between computing nodes), and
the typically high computation load require the support of different multiple-processor configurations:
tightly-coupled architectures with shared mesory, loosely-coupled computer networks, and their combination.
Special hardware components such as array processors or i/o devices might also belong to the hardware con-
figurations.

B. Systes layer .

The primary function of the system layer is to pravide access mechanismes to the hardware resources. Is
the current implementations of MA, the system layers are off-the-shelf operating systems, which facilitate
services such as standard i/o, task management, intertask (interprocessor) communication and synchronizatios
and real-time clock. An important requirement for the higher-levels is flexibility to ensure the portability
to different operating systems.

C. Module layer

One of the most critical requirements for MA is to support the synthesis and dynamic modification of
various low-level computational structures (signal processing systems, control systems, etc.} in parallel
computing environment. The key idea in the solution is the introduction of the module layer, whicii serves as
an interface between the knowledge base layer and the system layer. The module layer has a special graph-
Of_‘iefllted computational model, the Multigraph Computational Model (MCM), which provides the following pos-
sibilities:

- high-level (possidly very high-level) declarative languages can be defined on
the knowledge-based layer to represent various computational structures such as
procedural networks, constraint networks, reasoning networks etc.:

- these declarative focrms can be interpreted and mapped into a computation graph
on the module layer;

- the run-time support of MCM can schedule the elementary computations and “pass” them
to the system layer for execution, taking advantage of the availadle parallelisa of
the computational structures;

- appropriate interpretation techniques can ensure the dynamic modification of the
computation graph, .

132

e

The u- “Nodule layer® suggsts"ihe view that this layer is a "module library® consisting of typically
saa)l program modules written in C, Fortran, LISP etc. These modules are structured to form a cosplete program
by the definition of the computation graph.

R
D. Knowledge base layer)

High-level, symbolic computations are implemented on the knowledge base layer. Although the actual struc-
ture of the Kknowledge-based system compoments are strongly application dependent, the parallel computing
environment and the features of the underlying module layer mske the elaboration of a generic programming
mode) desirable. The main purposes of the high-level programming model are:

- to support the structurization of the knowledge-based operations into concurrent
activities,

- to facilitate a standardized, high-level communication system among the activities, and
- to provide interface to the module layer and MCH.

A strict requirement is that these services have to be impTemented as extensions to one of the standard
LISP systems in order to preserve the compatidility with different Al toolsets.

S. OVERVIEW OF TME MULTIGRAPH ARCHITECTURE

The basic computing models used on the different layers of MA and their
Figure 1.

relationships are represested in

/

[» 'o" i " , S
| | //
/ é J é/ SYSTEM TASKS
' SYSTEM LAYER

FIGURE 1. layers of the Multigraph Architecture

133

-—

A. Autonomous Communicating Objects (ACO)

The Miic" system structurization |;rindple on the knowledge base layer is provided by the concept of
: Astonomous Commmicating Objects. ACO 1s a straightforward extension of the “object™ concept of object-
’ oriented languages such as Flavor [8] in the following sense:

- ACO's are fully autonomous systems that can run virtually or physically parallel,
i - ACO's can be dynamically allocated and can compete for the same resources,
- they communicate with each other by means of a fully asynchronous communication
protocol. :

The main purpose of ACO’s is to provide a standardized “object shell” around a variety of heterogeneous
knowledge-based system components. The communication “methods® are standard elements of the object shell, and
hide the details of an actual isplementation from the application prograsmers.

Varfous object types have been developed for supporting specific applications. These objects typically
include a “knowledge base,” wfich is represented by a special representation language. Some of these object
types, such as Procedural Network Object (PNO) and Rule Metwork Object (RNO) are described in [9].

8. Multigraph Computational Model (MCM)

The different object-types are facilitated with an appropriate interpreter or incremental compiler, which
maps the actual knowledge base into a computation graph on the module layer [9]. While ACO's serve as a sym-
bolic representation and interface to possibly complex functional components of the system (e.g., a signal
processing system, rule-based system, associative database system, etc.), the computation graph on the module
layer constitutes their actual execution environment. This relationship between the ACO's and their execution
environment has the following advantages:

- Execution of the operations represented by ACO's occurs in a parallel execution
environment offered by MCH.

- The interpreter (or incremental compiler) “methods® of ACO's, which build the
computation graph, can dynamically modify the graph, as a response to an external
message, or 1o a feedback from the execution environment (a mechanism for
implementing “self- modifying® signal processing systems is described in [4]).

the "macro-structure” of the system, and they comsunicate by using the services of
loosely coupled distributed systems (typically message passing). The computation
graphs provide the “micro-structure® of the system components. MCM efficiently
supports medium-level (subroutine size) computational granularity, and can take
advantage of tightly-coupled muitiprocessor architectures with shared memory.

. - The system fully integrates two different parallel computing models. ACO's form

C. System tasks

The computational model on the system layer is provided by the actual operating system. The key concept
is the "system task,” which represents a ®slice” from the processing capacity, and can access to varinus
resources. The elementary computation units that are scheduled by the run-time support of MCM are executed by
the system tasks.

6. MULTIGRAPH COMPUTATIOMAL MOOEL

.KZH can be characterized as a control-flow model. The control structures of computations are represented
by bipartite graphs that are built of actormodes, datanodes and commection specifications (see Figure 2).

The actornodes are associated with the elementary computational units, called scripts, which can bde
written either in LISP or in any other language, such as C, Fortran, Pascal, etc. The scripts do not know
about their position in the control graph: they communicate with other graph components through the
input/output ports of the actornodes. The actornodes are associated with a local datastructure, called
context, which can be accessed by the script. If the code of the script is reentrant, it can be attached to
several actornodes. In different computation problems the scripts may be quite different: a Script may be an
interrupt-driven 1i/o handler, a transformation of the input data arriving to the actornode, or an interpreter
module, which interprets the symbolic form stored in the context of the actornode.

Datanodes store and pass the data generated by actornodes. They can be either streams with multiple
output ports, or scalars. The streass maintain the partial sequence order of the data generited during the
computations, which preserves the overall consistency.

The control graph can be operated in data-driven or in demand-driven mode, or in a combination of the two

modes. In data-driven mode, the data sent to a datanode propagate a “control token™ to the comnected actor-
nodes. The actornodes will fire according to the specified control discipline: in §fall mode, at least one

‘ 134

7 CONTEXT .
CONTROL GRAPH
p—— p——p
) . al d1 az 42 a3
- .
G PN - P N
DATANOOE

FIGURE 2. Components of the Multigraph Computation Model

control token must be sent to all of the inputs of the actornode: in ifany mode, every received contrcl token
will cause firing. In demand-driven mode, the request for data sent to 2 datanode will generate a control
token if the datanode is “empty.” This control tokem will fire all of the actornodes that are potentially able
to provide the requested data. The demand propagates backward along the control graph until data is generated.
From this point a forward propagation starts, which finally provides the requested data. A wmore detailed
description of the computational model can be found in [10, 111.

The run-time support for the MCM is provided by the Multigraph Kersel (MX). The structure of the K is
shown in Figure 3. The control graph is represented in the descriptors, which are manipulated by various
kernel functions. The Coatrol Interface functions are used for dynamically building and modifying the control
graph. These functions are imbedded in a LISP system, where the various graph-builder interpreters and in-
cremental cowpilers are {mplemented. The Module Imterface includes the dat2/demand propagation kernel calls
for the scripts. An important feature of the system is that actornodes with scripts written in different
Tanguages can be mixed in the same control graph. (The necessary transfer routines are invisible to the user.)
This feature is used for creating tight coupling between symbolic and non-symbolic computations. Tight cou-
pling means that not only data structures can be passed between the two kinds of computations, but there may
be a fully integrated control structure.

CreateActor{): CreateData():

CONTROL INTERFACE M f—Receive
| ¢)
'E_ g Htﬂin
DESCRIPTORS R ke send
RE
l E k—avort
SYSTEM INTERFACE

CreateEnv(); AttachTask{ };. . .

FIGURE 3. Structure of the Multigraph Xernel

135

The most complex part of MK is the System Isterface. The System Interface schedules the elesentary com-
putations that are defined during the data/desand propagation. The computatiosal wmits (the scripts of the
fired actornodes) are passed to the available system tasks for execution. The enviromment mechanism of the
Systes Interface ensures that subsets of the control graph can be dynamically asseciated with one or more
system tasks that ‘inclede the necessary resources for executing the scripts. This mechanisa provides a very
straightforward way for dynamic resource management in multiprocessor configerations.

Two tmportant fsplemestation issues are the granularity and the memory mndel. The lower 1limit for the
reasonable computational gramularity {s basically determined by the overhead of MK. Since MK currently is
jmplemented in software, the overhead is introduced by the control token propagation functions. On the 68000
processor-based IBM 9000 system (clock frequency is 8Wz), the overhead is about 800 microseconds: on the VAX
785 implementation s less then 200 microseconds. Due to the construction of the MK, the overhead is basically
independent from the size of the control graph.

Since NCH is a control-graph model where the pointers to data structures rather than the data are passed
along the graph, the mode]l requires the presence of shared memory for those tasks (and processors) that are
assigned to the same subgraph as execution resource (see Figure 4). In order to provide flexibility toward
architectures which do mot support shared memory access for the processors (hypercudbe architectures or dis-
tributed computer configurations), a simple mechanism is implemented to link control graphs that are allocated
in the local memory of the separate nodes. The scripts of receiver and tramswitter actornodes provide a logi-
cal link between the separated subgraphs and isplement the data transfer by using the actual services of the
underlying system layer (e.g., the message passing services of DECNET in the WVMS/DECNET implementation). At
these links, the control-graph model is “transformed” to dataflow model, since the actual datastructures - and
not just pointers - are passed to the “remote” nodes.

This method makes it possible to generate large processing networks from their symbolic representation in
distributed computing environment [12].

NODE -1 | NODE -2

SHARED MEMORY SHARED MEMORY

(data
Clesyaxanaaa E XY] =-wCD

(data)
P T, ST LY i]

FIGURE 4. Memory Model of MCM

7. STRUCTURE OF THE EXECUTION ENVIRONMENT

The simplified structure of the execution environment supporting MA can be seen in Figure 5. MK is imple-
mented as an additional layer to a standard operating system. Depending om the computer architecture and on
the features of the particular operating system, MK may exist in one or more copies. The System Interface of
MK is a well structured, modular program which makes porting the kernel relatively easy, even to devastatingly
different operating systems and real-time supervisors.

The Module Interface functions of MK can be invoked from LISP as well as from other languages. This
ensures that scripts can be written in different languages, and existing modwle lidraries can be easily inter-
faced to MK. The Comntrol laterface of MK is imbedded in LISP since currently we uwse LISP as implementation
language of the knowledge base layer.

Vartous high-level software components such as the generic object shell for ACO's and the standard
methods of different ACO types are implemented in LISP.

For distributed computer configurations, the LISP system (in the first {implementation FRANZ LISP,
recently changed to Common Lisp) has been expanded with the Communicating LISP System facility, which provides
task management and asynchronous message passing primitives [13].

136

ACO SHELL

-

LIsp
{Franz Lisp, Common Lisp)

MULTIGRAPH KERNEL

OPERATING SYSTEM
{VMS/DECNET; CSOS; MS-DOS)

FIGURE 5. Structure of the Execution Enviromment

8. EXPERIENCES

MA has been implemented on very different cosputer configurations and has been used for various applica-
tions.

An Intelligent Test Integration System (ITIS) has been implemented in the Space Station Laboratory of the
Boeing Aerospace Company in Huntsville, AL [12]. The purpose of ITIS is to support the automatic generation of
test systems in real-time, distributed computing environment. ITIS is implemented as a knowledge base layer
above the conventional test system components, and can build complex test configurations from the symbolic
specification of test scenarios. The computing environment is a VAX network with the WMS/DECNET operating

system expanded with special hardware units.

A different application of the layered MA architecture is the Knowledge-based Experiment Builder (KEB),
which was developed for the M.1.T/IBM experimental MRI (Magnetic Resonance Imaging) system [4]. The core of
the KEB is a high-level representation language for signal processing schemes and a smart interpreter, which
can generate the appropriate version of the real-time signal processing system, and which is adble to recon-
figurate it for specific events. The computing environment of this system is the IBM 9000 computer with the
CSOS real-time operating system.

Yarious computational structures have been developed and are being investigated for tne MCM, sSuch as a
hierarchical planner {14], knowledge-based simulation builder [15), pattern-driven inference system [16], etc.

9. CONCLUSIONS AND FUTURE PLANS

The integration of symbolic and conventional programming techniques, parallel computing models of dif-
ferent granularity, and various programming paradigms are essential conditions for the successful implementa-
tion of intelligent real-time systems. The Multigraph Architecture has proven to be a good approach to solve
the problems of integration. It provides a generic framework, programming models for structurizing software
components and various tools for the actual implementation.

We have practical experiences with implementing systems in single-processor (IBM-AT/MS-DOS), single-
processor multitasking (VAX/VMS and IBM 9000/CSOS) and distributed {(VAX network VMS/DECNET) computing environ-
ments. As a next step, we intend to implement the execution environment for tightly-coupled multiprocessor
configuration.

The system offers a convenient method to describe and implement “self-modifying® signal processing sys-
tems. Further research is needed to utilize this capability in the design of structurally adaptive measurement
control systems.

10. ACKNOWMLEDGEMENTS

The research described in this paper was supported in part by Boeing Aerospace Company, IBM Corporation
and Vanderbilt University. The author especially wishes to acknowledge the contributions of Csaba Biegl and
Gabor Karsai to the design and implementation of the execution environment, and Byron R. Purves of Boeing
Aerospace Company and Colin G. Harrison of IBM to the design of the application systems.

; luell; *The Knowledge Level,” Artificial Intelligence, Vol. 18, 1982, pp. 87-127.

.S. Lee, G. Bekey, A.K. Bejczy, "Computer Control of Space-Borne Teleoperators with Seasory Feedback,”
Proc. of the 1EEE International Conference on Robotics and Automation, St. Louis, MO, 1985, pp. 205-214.

J. Sztipanovits, "Knowledge-Based Approach fn Measurement and Instrumentation,” Proc. 3rd Internatiossl
Conference on Measurement in Clinical Medicine, Edindurgh, Scotland 1986, pp. 29-33.

J. Sztipanovits, C. Biegl, G. Karsai, J. Bourne, C. Harrison, R. Mushlin, "Knowledge-Based Experimest
Builder for Magnetic Resonance Imaging Systems,® Proc. of the 3rd IEEE Conference on Artificial Intel-
ligence Applications, Orlando FL., 1987 (in press}).

K.J. Astrom, "Auto-luning Adaptation and Expert Control,® Proc. American Control Conference, Boston M,
1985, pp. 1514-1519.

J.C. Browne, “Formulation and Programming of Parallel Computations: A Unified Approach,® COMPCON, Sprisg
1985, pp. 624-631.

D.D. Galski and Jih-Kwon Peir, “Essential Issues in Multiprocessor Systems,™ IEEE Computer, June 1965,
pp. 9-27.

D. Moon, R. Stallman, D. Weinreb, "LISP Machine Manual,” The MIT Al Lab., Cambridge MA, 1984.
J. Sztipanovits, R. Purves, G. Karsai, C. Biegl, S. Padalkar, R. Nillfams, T. Christiansen, “Prograsming

Model for Coupled Intelligent Systems in Distributed Execution Environment,” Proc. of the SPIE's
Cambridge Symposium on Advances in Intelligent Robotics Systews, Cambridge, MA, 1986 (n press).

J. Sztipanovits, "MULTIGRAPH: Parallel Architecture for Intelligent Systems,® Dept. of Electrical Es-
gineering, Vanderbilt University, Techn. Report #86-01, 1986.

C. Biegl, ™Multigraph Kernel User's Manual,” Dept. of Electrical Engineering, Vanderdilt University,
198S.

J. Sztipanovits, B. Purves, S. Padalkar, J. Rodriguez, K. Kawasura, R. Williams, H. Biglari, “lIntel-
ligent Test Integration System," Proc. of the Conference on Artificial Intelligence for Space
Applications, Huntsville, AL, 1986, pp. 177-185.

S. Padalkar, "Communicating LISP System Facility,” M. Sc. Theses, Dept. of Electrical Engineerisg,
Yanderbilt University, 1987,

6. Karsai, “"MWierarchical Planning witF Objects,” Proc. of the 19th Southeastern Symposium on Systess
Theory, Clemson, SC, 1987 (in press).

C. Biegl, "Knowledge-based Generation of Simulation Models,” Proc. of the 19th Southeastern Symposium on
Systems Theory, Clemson, SC, 1987 (in press).

C. Biegl, "Florence (Dataflow Oriented Inference Engine) User's Manual,” Dept. of Electrical Engineer-
ing, Vanderbilt University, 1986.

138

